

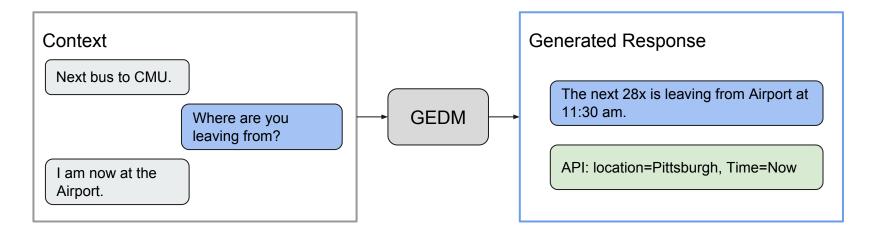
Zero-shot Dialog Generation with Cross-Domain Latent Actions

Tiancheng Zhao and Maxine Eskenazi

Language Technologies Institute, Carnegie Mellon University

E2E Dialog Response Generation

- Generative End-to-end Dialog Model (GEDM) is a powerful framework for both task and non-task dialog systems. [Ritter et al 2011, Vinyals et al 2015, Serban et al 2016, Wen et al 2016, Zhao et al 2017]
- Integration with database by treating DB as a part of the environment (Zhao et al 2016).



Problem: Data Scarcity & Poor Generalization

- GEDMs require LARGE training data
- Impractical since data are often NOT available:
 - Booking, recommendation, entertainment etc
- Goal:
 - Exploit GEDMs flexibility and let one model
 simultaneously learn many domains. (Multi-task)
 - Transfer knowledge from related domains with data to new domains without data. (Zero-shot)

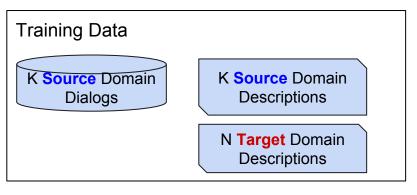
Example: a customer service agent in shoe department can begin to work in the clothing department after reading training materials, without the need for example dialogs.

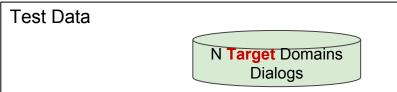
Define Zero-shot Dialog Generation (ZSDG)

- Source domains: D_{source} is a set of dialog domain with dialog training data.
- Target domains: D_{target} is a set of dialog domains without data.
- Domain description: $\phi(d)$ captures domain-specific information about d
- Context is **c** and response is **x**

Train Data:
$$\{\mathbf{c}, \mathbf{x}, d\} \sim p_{\text{source}}(\mathbf{c}, \mathbf{x}, d)$$

 $\{\phi(d)\}, d \in D$
Test Data: $\{\mathbf{c}, \mathbf{x}, d\} \sim p_{\text{target}}(\mathbf{c}, \mathbf{x}, d)$
Goal: $\mathcal{F} : C \times D \to X$



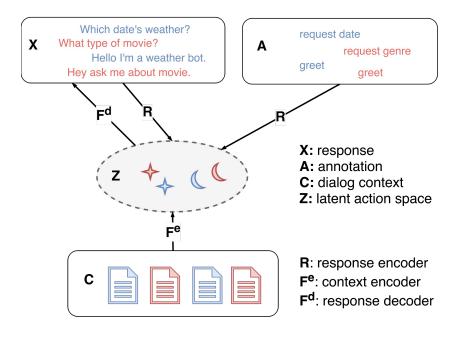


Seed Response (SR) as Domain Description

- Define SR(d) as a set of tuples
 - Each tuple contains utterances with annotations for a domain: {x, a, d}_{seed}
 - **x** is an example utterance, **a** is annotation, **d** is domain index.
- Assumption: Shared state tracking & policy <-->domain-specific NLU & NLG

X	а	d
x = the weather in New York is raining	[Inform, location=New York, weather_type=Rain]	weather
x=what's the location?	[request location]	weather

Action Matching Algorithm



- R: encode utterances/annotations into latent actions
 - $\circ \quad z^d_{\ x} = R(x, d)$
 - \circ $z_a^d = R(a, d)$
- **F**^{e:} predict latent action given the context

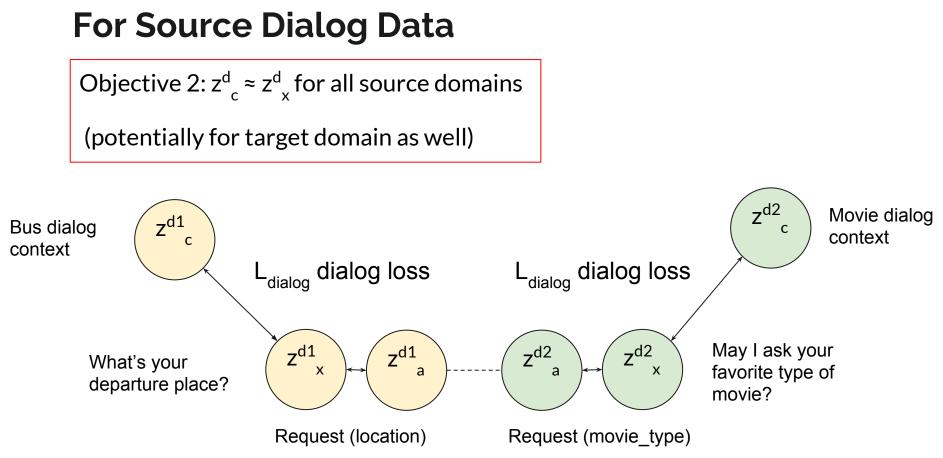
 \circ $z_{c}^{d} = F^{e}(c, d)$

- **F**^d: generates the response from latent action
 - \circ x = F^d(z)

For Seed Response Data

Objective 1:
$$z_{x}^{d1} \approx z_{x}^{d2}$$
 when $z_{a}^{d1} \approx z_{a}^{d2}$





Optimization by Alternating these 2 losses

```
• L_{dd}(F^{d}, R) = -\log p_{Fd}(x|R(a, d)) + \lambda D[R(x, d) || R(a, d)]
```

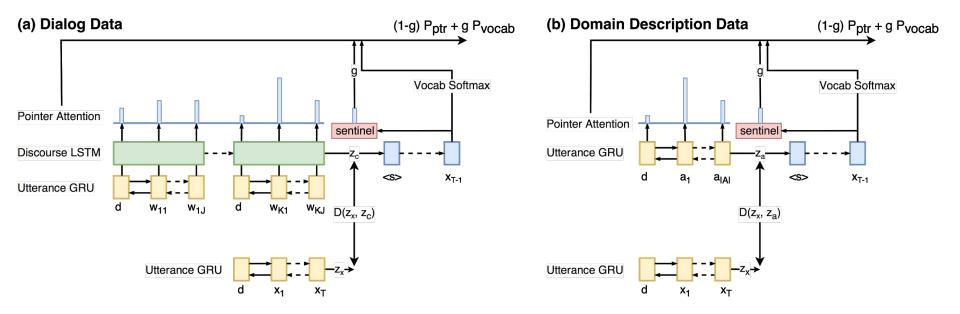
• $L_{dialog}(F^e, F^d, R) = -\log p_{Fd}(x|F^e(c, d)) + \lambda D[R(x, d) || F^e(c, d)]$

```
Algorithm 1: Action Matching TrainingInitialize weights of \mathcal{F}^e, \mathcal{F}^d, \mathcal{R};Data = {\mathbf{c}, \mathbf{x}, d} \bigcup {\mathbf{x}, \mathbf{a}, d} seedwhile batch ~ Data doif batch in the form {\mathbf{c}, \mathbf{x}, d} then| Backpropagate loss \mathcal{L}_{dialog}else| Backpropagate loss \mathcal{L}_{dd}end
```

Implementation

- Recognition Network R: Bidirectional GRU
- Encoder Fe: Hierarchical Recurrent LSTM Encoder (HRE) [Li et al 2015]
- Decoder **Fd**:
 - LSTM Attention decoder
 - Attention over every words in the context
 - Standard baseline.
 - LSTM Pointer-sentinel Mixture (PSM) Decoder (Copy mechanism) [Merity et al 2016]
 - Can copy any words from the context
 - Proven to show good performance in generating OOV tokens.

Implementation with PSM decoder



Data

1. CMU SimDial: simulated dataset

2. Stanford Multi-domain Dialog (SMD) Dataset:

Human-Woz dataset

CMU SimDial

- A open-source multi-domain dialog generator with complexity control.
- Source Domains (900 training, 100 validation dialogs for each domain):
 - Restaurant, Bus, Weather
- Target Domains (500 testing dialogs for each domain)
 - Restaurant (in-domain)
 - Restaurant-slot (unseen slot): introduce new slot values
 - Restaurant-style (unseen NLG): same slot values but different NLG templates
 - Movie (new-domain): completely new domains
- Seed Response (SR):
 - 100 unique random utterances from each domain, annotations are semantic frames used by the simulator.
 - I believe you said Boston. Where are you going?" \rightarrow [implicit_confirm location=Boston; request location]

Stanford Multi-domain Dialog (SMD)

- 3031 human-Woz data about 3 domains [Eric and Manning 2017]
 - Schedule, Navigation, Weather
- Leave-one-out to rotate among each domain as the target domain.
- Random sample 150 unique utterances from each domain as SR
- An expert annotated the 150 utterances in SR (available online)
 - All right, I've set your next dentist appointment for 10am. Anything else? \rightarrow [ack; inform goal event=dentist appointment time=10am; request needs].
- All the target data that we need is the 150 utterances with annotations No large dialog corpus is needed!

Metrics and Compared Models

- 1. **BLEU-4**: corpus-level BLUE-4 between the generated responses and references.
- 2. Entity F1: checks if the generated responses contains the correct entities (slot values)
- 3. Act F1: checks if the generated responses exhibits the correct dialog acts (using a classifier)
- 4. **KB F1**: check if the generated API call has all correct command tokens.
- 5. BEAK: geometric mean of the above 4 scores.
 BEAK = (bleu × ent × act × kb)^(1/4)
 - a. **BE (for SMD)**: BE = (bleu x ent)^ $(\frac{1}{2})$

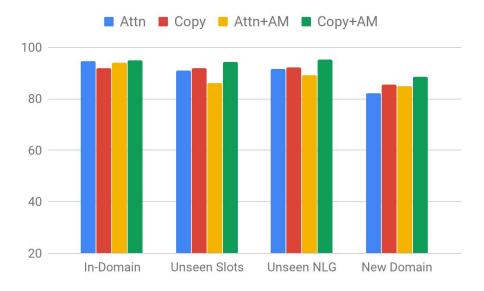
Four models are compared:

- 1. HRE + Attention Decoder (+Attn)
- 2. HRE + PSM Decoder (+Copy)
- HRE + Attention Decoder + AM training (+Attn+AM)
- 4. HRE + PSM Decoder + AM training (+Copy+AM)

Overall Performance

- 1. What fails when testing on new domain?
- 2. What problem does Copy solve?
- 3. What problem does AM solve?
- 4. How does the size of SR affect AM's performance?

What Fails on New Domains?



Dialog Act F1 on SimDial

Answer: fail to generate the correct **entity** as well as the correct **overall sentence**. Dialog acts are okay.

First analyze dialog acts:

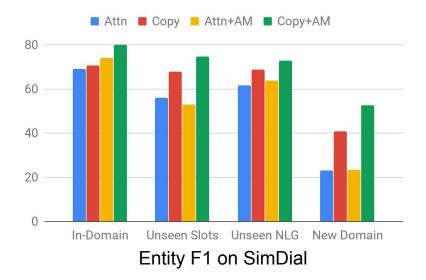
Good Examples:

- Ref: See you.
- Generated (Attn): See you next time

Bad Examples:

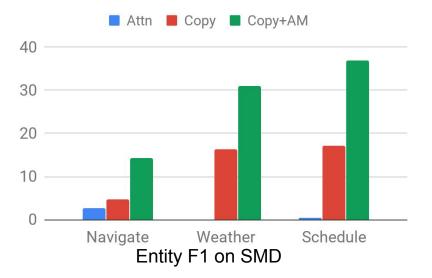
- **Ref**: Hi I am your movie bot. What can I do for you?
- Generated (Attn): Hi this is the restaurant system. How can I help?
- **Ref**: Sci-fi movie. What time's movie?
- Generated (Attn or Copy): Pittsburgh. what kind of restaurant are you looking for?

What Problem Does Copy Solve?



Answer: Copy Network improves **entity** score significantly, especially when there are OOV entity **Examples**:

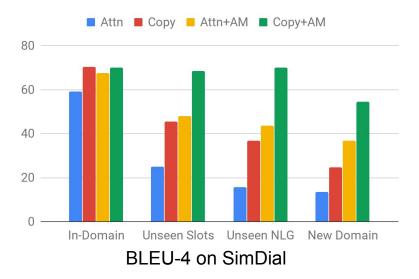
- **Ref**: Do you mean sci-fi?
- Generated (Attn): Do you mean pizza?
- Generated (Copy): Do you mean sci-fi?



Bad Examples:

- Ref: Movie 55 is a good choice.
- Generated (Copy): I would recommend restaurant 55.
- **Ref**: I believe you said comedy movie.
- Generated (Copy): I believe you said comedy food.

What Problem Does AM Solve?



Attn Copy Copy+AM

Answer: AM enables the decoder to generate overall novel utterances, not just entities

Examples from SimDial:

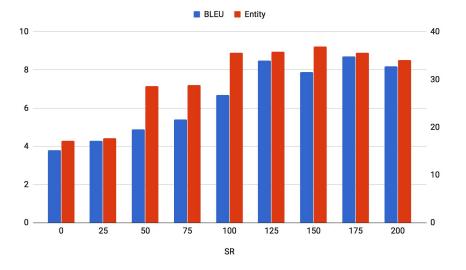
- Ref: Movie 55 is a good choice.
- Generated (Copy+AM): Movie 55 is a good choice

Examples from SMD:

- **Ref**: Okay, scheduling Friday dinner with mom at 11 am
- Generated (Copy+AM): scheduling a reminder for dinner on Friday with your 11AM at 10 am

Impact of Seed Response (SR) Size

- Investigate how the size of SR affects the performance of AM algorithm.
- Vary the size of SR from 0 to 200 in the SMD data.
- Use **schedule** as the target domain.



Contributions

- Propose ZSDG, a new challenge for generative dialog systems.
- Propose AM algorithm with seed responses for solving ZSDG under the assumption that there exists a shared discourse-level pattern.
- Validate AM's effectiveness extensively on both synthetic & real dataset.
- Open-source SimDial, a multi-domain dialog generator that can be used to benchmark ZSDG.

Future Work

- How to quantify the relationship among domains? In what situations, ZSDG is possible?
- How can we reply less on annotation to find alignments between responses in source & target domains?
- How can we solve ZSDG when the discourse-level patterns are significantly

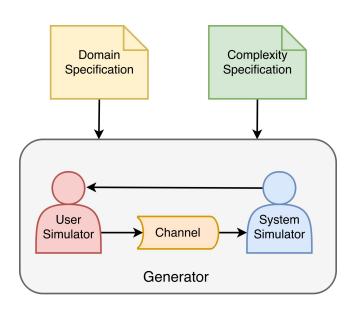
different from the source to the target?

• What are other potential domain description formats?

Thank you!

Code & Data: github.com/snakeztc/NeuralDialog-ZSDG

More on SimDial



- Environmental: the complexity level of the communication channel, e.g. automatic speech recognition (ASR) error rate.
- **Propositional**: the complexity level in the propositional content of user utterances, e.g. the chance that a user will give multiple slot values in one utterance.
- Interaction: the complexity level in terms of real-time interaction, e.g. the percentage of self-repair.

Example Dialog

Domain: Restaurant

Sys: Welcome to the restaurant recommendation system. What do you need?

User (0.83): Hello robot. I am looking for a restaurant.

Sys: Which city are you interested in?

User (0.75): I am in San Jose. And Korean. Uhm sorry, I am interested in Chinese food.

Sys: I believe you said San Jose. I believe you said Chinese.

Sys: QUERY goal: restaurant food-pref: Chinese location: San Jose

KB: RET restaurant: 17

Sys: Restaurant 17 is a good choice. What else can I do for you?

User (0.6): Not done yet. Is that restaurant open now?

Sys: QUERY goal: open restaurant: 17 food-pref: Chinese location: San Jose

KB: RET open: yes

Sys: Yes, it is open right now. What else?

User (0.69): No more questions. Thanks.

Sys: Bye.

Domain: Movie

Sys: Want to know about movies? Please ask me!

User (0.43): Hello robot. Give me some good suggestions about movies.

Sys: Which type of movie?

User (0.95): I like Documentary movies. Uhm sorry, Drama.

Sys: I believe you said Drama. Movie in what years?

User (0.64): In 70s.

Sys: QUERY goal: movies type: Drama years: 70s

KB: RET movie: 62

Sys: Movie 62 is a good choice. Are you happy about my answer?

User (0.74): All good. Thank you.

Sys: See you next time.

Relationship with Latent Variable Dialog Models

- Latent variable dialog models [Serban et al 2016, Zhao et al 2017] assume Gaussian stochastic latent variable.
- $L_{dialog}(F^{e}, F^{d}, R) = -\log p_{Fd}(x|F^{e}(c, d)) + D[R(x, d) || F^{e}(c, d)]$
- $L_{CVAE}(F^{e}, F^{d}, R) = -\log p_{Fd}(x|F^{e}(c, d)) + KL[R(x, d) || F^{e}(c, d)]$
- Difference:
 - We employ a general distance function D (we use MSE for this study)
 - Latent variables use KL-divergence, which is a special case.

More on Seed Response (SR)

- Assumption: there is a shared discourse-level pattern between the source & target domains.
 - Shared state tracking & policy <-->domain-specific NLU & NLG.
 - Hold true for many slot filling domains
- A GEDM can generalize to target domains without data if it can learn a mapping function where responses with **similar** functions from different domains are close-by.
- Denote the output of this mapping function as $z \rightarrow Cross$ -domain Latent Action

Seed Response Examples (SMD)

x	а	d	
Setting GPS to Safeway at 452 Arcadia PI.	request #goal #poi Safeway #location 452 Arcadia Pl	navigation	
Pizza My Heart is at 528 Anton Ct, directions are on the screen.	#poi Pizza My Heart #location 528 Anton Ct ; show	navigation	
Okay which one, I have two. One is the 8th with Jeff and the other is on the same day with Martha.	request #choice #count 2 ; inform #date 8th #party Jeff ; inform #date 8th #party Martha	scheduling	
Your next lab appointment is on Friday with Tom.	nform #event lab appointment #date Friday #party Tom	scheduling	
What city would you like the weekly weather report for?	request #location #goal #date weekly	weather	
what is the forecast for today and tomorrow	request #goal #date today and tomorrow	weather	

Qualitative Analysis on New Domain

Model/Type	General Utterance	Unseen Slots	Unseen Utterance
References	See you next time	Do you mean romance movie	Movie 55 is a good choice.
+Attn	Goodbye	Do you mean Chinese food?	Bus 12 can take you there.
+Сору	See you next time	Do you mean romance food?	Bus 55 can take you there.
+Сору+АМ	See you next time	Do you mean romance movie?	Movie 55 is a good movie.